SambaNova and Lawrence Livermore National Laboratory scale up collaboration

SambaNova DataScale® deployed to accelerate the performance of global supercomputers.

  • 6 months ago Posted in

SambaNova Systems and Lawrence Livermore National Laboratory (LLNL) are scaling up their collaboration to bring SambaNova spatial data flow accelerator into LLNL’s Computing Center. This solution upgrades LLNL’s cognitive simulation program by improving the speed and accuracy of scientific research.


LLNL is a leading federal research institution that leverages high performance computing (HPC) across its research. Increasingly, the institution has studied how deep neural network hardware architectures can accelerate traditional physics-based simulations as part of the National Nuclear Security Administration’s (NNSA’s) Advanced Simulation and Computing program.


Computer modeling and experimentation are essential to scientific research. Models simulate natural phenomena and experiments, which provide data to understand underlying principles. However, they face two fundamental challenges. First, even the most complex models do not achieve sufficient fidelity to simulate reality. Second, modern experiments regularly generate overwhelming amounts of data. To address these issues, LLNL researchers are working on cognitive simulation (CogSim), leveraging the SambaNova systems to improve the fidelity of models as well as to manage the growing volumes of data.


"Multi-physics simulation is complex,” said Brian Van Essen, computer scientist at LLNL and Informatics Group Lead. “Our inertial confinement fusion (ICF) experiments generate huge volumes of data. Yet, connecting the underlying physics to the experimental data is an extremely difficult scientific challenge. AI techniques hold the key to teaching existing models to better mirror experimental models and to create an improved feedback loop between the experiments and models. The SambaNova system helps us create these cognitive simulations.”


LLNL has been working with SambaNova since 2020. The collaboration started as a proof-of-concept and evolved to creating prototypes of the final solution together. The first stage of the collaboration involved tight integration of SambaNova DataScale hardware input directly into the Corona supercomputing cluster. This integration first enabled the use of AI calculations to improve overall speed, performance, and productivity. More importantly, it created a heterogeneous system architecture that integrates SambaNova’s system into the existing supercomputing cluster to support efficient CogSim. The next stage allows the heterogeneous system to be less tightly integrated with the supercomputing clusters. This design supports a wider selection of workloads, allowing LLNL to use a wider range of traditional resources, a more generalized solution that expands the possible use-cases.


“We are looking to leverage AI to improve speed, energy use, and data motion,” said Bronis R. de Supinski, CTO for Livermore Computing (LC), which operates LLNL’s Computing Center. “SambaNova has a different architecture than CPU or GPU-based systems, which we are leveraging to create an enhanced approach for CogSim that leverages a heterogeneous system combining the SambaNova DataScale with our supercomputing clusters.”


“Scientific discoveries rely on speed, accuracy, and collaboration. We’ve built and incredible partnership to solve complex scientific issues - together,” said Rodrigo Liang, CEO of SambaNova Systems. “We’re excited to leverage SambaNova’s agility, power, and flexibility to fulfill Lawrence Livermore National Laboratory’s mission of science in the national interest.”


By leveraging SambaNova’s architecture, LLNL’s need to address critical use-cases in the scientific community demonstrates the opportunity and need to have a full stack AI solution. 

One year on from the launch of Chat GPT, new data from Slack based on 10,000 global workers (including 1,000 the UK) reveals that UK companies believe there is greater urgency to adopt Generative AI at work than US companies - yet uptake remains cautious in both markets.
IBM and Meta launch the AI Alliance
Ethics, Bias and Regulatory concerns slowing European adoption.
Market research shows more than 46% of European organisations say AI has already made an impact on smart video capabilities and will only continue to drive business optimization.
High workloads are preventing people from finding time to upskill, according to 44% of UK IT managers surveyed.
Companies are racing to operationalize generative AI, but many haven’t addressed how AI-driven disruption will impact employees — who are torn between AI optimism and anxiety.
49% of senior decision makers have low confidence in implementing the technology.
80% of organisations surveyed see great significance in technology’s role to achieve their goals with AI’s predictive analytics offering significant business opportunity.